Worksheet: Vapor, Clouds, and Precipitation				Name:	
1. According to pa	ge 504, what is th	ne most important g	as in our atmospher	re?	
2. According to fig surroundings?	gure 2 on page 50	5, during which 3 p	hase changes do wa	ater molecules <u>absort</u>	o heat from their
3. *What happens	to the speed of w	ater molecules as th	ney change from vap	por to ice?	
4. What is the name The water molecular	ne of the phase ch les changed from	ange that causes fro	ost to form?to		
5. If a gym that ca statement are mos air's capac	t like each of the			full. Which of the nuther the specific humidit	
_	e table on page 50	06, how many gram	s of water vapor car	n a kg of air hold at t	these
temperatures?	14 F:	_ g. 68	F:	95 F:	
7. *What does the	word "saturated"	mean when we are	talking humidity?		
8. *Look at figure	3 on p. 507. Wh	y did the relative hu	umidity to go from 5	50 % to 100 % in this	s flask?
9. *Why is the rela	ntive humidity 50	% in flask A? (Ho	w was this calculate	ed?)	
10. The flask (B: 7 to the other 3.5 g.			C. Now in C it has o	only 3.5 g. of vapor.	What happened
It evaporat	ed.	It condensed to fo	orm liquid water.	It formed from	ost.
11. Look at graph Blue:	2 on p. 529, show	ring an average day	. What do each of t Red:	the following lines re	epresent?
12. What was the	temperature range	on the day represen	nted in the graph? (think)degr	ees Celcius
13. On this day the	e relative humidit	y varied from	% at 6 am to _	% at 6 pm	1.
14. *What caused	the relative humi	dity to change even	though the amount	of vapor in the air d	id not change?
A. The cap	elative humidity g acity increased. acity decreased.		ture dropped? Circlecific humidity increcific humidity decr	eased.	

Use complete sentences on those marked with an asterisk *.

16. Did the air reach its dew point on this day (still graph 2 on p. 529)? (Hint: what is the relative humidity when the air temperature reaches its dew point?)
17. Look at the photo on bottom of p. 508. When the relative humidity is low, why will there be a bigger difference between the wet-bulb and dry-bulb temperatures? Circle one.
A. There will be more evaporation from the wet-bulb when the relative humidity is low.
B. There will be less evaporation from the wet-bulb when the relative humidity is low.
18. If the dry-bulb temperature is 28 C and the wet-bulb temperature is 18 C, what is the relative humidity? Use the table on page 525.
19. *What is the point of the photo on the bottom of page 514?
20. Look at figure 7 on page 511. As air rises, it cools by expansion. Cloud formation started when the rising air reached 3000 m (condensation level) because the air reached itspoint.
21. *Look at diagram A on top of page 512. What is causing the air to rise here? (It is called "orographic lifting". What causes the "lifting"?)
22. What two characteristics are used to classify clouds? (p. 517)
23. *How is "fog" different from other clouds?
24. *What does "supercooled" mean? (see p. 521)
25. *Explain how "glaze" forms.
26. *The <u>layers</u> shown in the piece of hail shown atop page 522 were formed when supercooled droplets froze? Why are there so many layers? (Hint: "updrafts" p. 522)